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Abstract
The following report describes a series of research tests to evaluate candidate high
temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-
disk reciprocating sliding tests were conducted from 25 to 843°C in air and hydrogen
containing inert atmospheres. Friction, both dynamic and static, was monitored and serves
as the primary test measurement. In general, soft coatings lead to excessive static friction

and temperature affected friction in air environments only.



Introduction
Advanced flight vehicles operating at supersonic and hypersonic speeds present many
structural and dynamic engineering challenges to designers. One of these challenges is
airframe and engine panel seals (Ref. 1). These seals are designed to prevent leakage of
ambient air or combustion gases from damaging internal components. A hypersonic cruise
vehicle utilizing ducted scamjet/ramjet propulsion, for example, experiences not only
significant frictional air skin heating but also engine combustion heating in the presences of
air, hydrogen and water vapor (Ref. 2). These conditions require the use of advanced seals

which must accommodate a wide variation of temperatures and environments.

One advanced type, metallic "E-Seals” are designed to operate as panel to panel seals in both
airframe and ducted engine applications. These types of seals, depicted in Figure 1, provide

the required deflection characteristics to accommodate anticipated temperature extremes.

The static and dynamic friction between the seal and its adjacent mating panel are critical
design parameters. Typical friction valves under anticipated conditions of load, temperature
and environment are needed to address strength, stress and deflection requirements of the
seals. Unfortunately, this type of tribological design data is not generally available for the

" advanced candidate materials and coating combination being considered. To address this
problem, the following report describes a tribological test program to evaluate the static and
dynamic friction characteristics of candidate seals materials. Specimens in the form of pins
and disks with and without various lubricant/compliant coatings are tested at simulative loads
and temperatures using a pin-on-disk tribometer at NASA Lewis Research Center. The
output data includes static and dynamic friction coefficients and general surface
morphological characteristics after testing.

Materials
The high temperature panel seals under design consideration consist of an elastic wave seal

made from Incoloy 909, Haynes 188, René 41 or Waspaloy. The panels they seal against



are made from Incoloy 909, Haynes 188, Narloy Z, or MoRe depending on their location
and specific application. Table I gives the room temperature thermal, physical and strength
properties and nominal composition of these materials. Haynes 188, Waspaloy and René 41
are superalloys chosen for their high temperature strength and oxidation resistance. MoRe,
although requiring oxidation protective coatings, offers excellent high temperature strength
and low thermal expansion. Incoloy 909, an iron based superalloy, also exhibits relatively
low thermal expansion simplifying design details. Finally, Narloy Z, a copper alloy is

chosen for actively cooled heat exchange applications for its high thermal conductivity.

Narloy Z, Incoloy 909 (1909) and MoRe lack sufficient oxidative resistance at high
temperatures. For certain tests, Narloy Z and 1909 are coated with Cu-Cr for oxidation
protection. All of the MoRe specimens are coated with Pt to prevent high temperature
oxidation. Additionally some 1909 specimens coated with Cu-Cr are also top coated with
lubricant films of silver. These coating-specimen combinations are given in Table II. The
lubricants Ag I and Ag II are electropated silver films approximately 10-15xm thick
designated by specification as Ag-2411-D-MOD and Ag-QQ-S-365 respectively. The Ag I is
a standard electroplate while Ag II is a standard electroplate deposited over a thin bond layer
electroplated under a high rate condition. In addition to functioning as a lubricant, the silver

films act as a compliant, conformal layer improving sealing.

Test Apparatus and Procedure

The pin and disk specimens are tested in reciprocating sliding in a pin-on-disk tribometer.
The tribometer, described in detail in Ref. 3 consists mainly of an oscillating spindle, driven
by a crank rocker mechanism on which the disk is mounted. A torque tube which holds the
pin specimen. The pin is loaded against the oscillating disk face using dead weights. The
specimens are positioned inside a resistance heated furnace capable of attaining 1200°C. For
controlled atmosphere tests (Ar-H,) an inner chamber made of Inconel X-750 is placed
around the specimens inside the furnace and purged with the separate test gas. A schematic

of the rig is shown in Figure 2.



To simulate the anticipated application conditions, a step-wise heating, loading, sliding test
procedure is used as depicted in Figure 3. The test loads and temperatures are
representative of the seals. Table III shows the two test loads, Pa and Pb, used and the
resulting nominal hertzian contact stresses for the material combinations tests. Tables IVa

and Va give the specific conditions (temperature, loads, environment) for the tests.

Both static and dynamic friction coefficients are measured during the test cycle. Dynamic
friction is measured using a computer data acquisition system which averages 25 samplings
over a one second interval. This acquisition system is described in Ref. 4. The static
friction measurement is made by manually rotating the disk while observing a high speed
oscilloscope type chart recorder (oscillograph).

Prior to testing, the samples are cleaned with pure ethyl alcohol and rinsed with deionized
water. Uncoated samples are further cleaned by scrubbing with levigated alumina and water
followed by a deionized water rinse and air drying. The test atmosphere is either room air at
40-60% relative humidity or Argon gas doped with 4% hydrogen (Ar-H,). The room air
tests simulate seals operating near the inlet of an engine or on the airframe. The Ar-H, gas
simulates seal operating near the combustion zone or in proximaty of hydrogen cooled
panels. After tribotesting, the pin and disk specimens are analyzed using opﬁcal microscopy
to observe the wear surface morphology. Stylus surface profilometry and scanning electron

microscopy on selected specimens are used to further characterize the wear surfaces.

Tables IVb and Vb give the static and dynamic friction coefficients for the material
combinations tested. The measured friction ranged from about 0.2 to over 3.0 depending on
the specimen pair, temperature and sliding condition (static or dynamic). Although the data

covered in the table vary greatly, some general trends were observed:



Soft Coated Pin Surfaces

For pin surfaces that were coated with silver or gold sliding against unlubricated disks (Tests
3-12, and 17-24), several noticiable trends appear. Friction coefficients, both static and
dynamic, generally increase as the test temperature increased and as the test load increased.
The static friction typically exceeded dynamic friction by at least a factor of 2. For silver
coated specimens, friction in air is slightly higher than friction measured during sliding in an
Ar-H, environment. Gold coated specimens exhibit no such sensitivity to the test

atmosphere.

Pt Coated MoRe Disk Surfaces

For MoRe disk surfaces coated with platinum (Tests 1, 2, 31, 32, 35 and 36), static friction
is greater than dynamic friction. Friction in air (Tests 2, 32 and 36) is significantly lower
than friction measured in an Ar-H, environment and decreases as the test temperature

increases. For Ar-H, tests no such temperature sensitivity is noted.

ickel uperalloy Disks/Pins - Uncoat
Uncoated nickel based superalloy disks (René 41, Waspaloy) sliding against uncoated nickel
based superalloy pins (Tests 30, 33 and 34) exhibit behavior typical of these materials in that
as the temperature increases friction generally decreases and the friction in air (Test 34) is
lower than in Ar-H, atmosphere (Test 33) (Ref. 5). However, for these combinations, static
friction is approximately equal to dynamic friction.

Discussion

The friction results suggest that interfaces where one component is hard and another is soft
(for examples Tests 4, 9, 10) yield high static friction. This may be due to adhesion and
severe plowing of the soft material by the harder counterface. Evidence for this behavior
can be seen in Figure 4 which shows the pin specimen from Test 4. Here, plastically
deformed silver is smeared beyond the contact area. Since sliding friction is roughly
proportional to contact area, friction is increased when the smearing occurs (Ref. 6). For

sliding pairs were both surfaces are hard, the contact areas are small and friction tends to be



lower, especially static friction. Figure 5, from Test 30, shows a pin wear scar of a Ren€ 41
pin after sliding against a Waspaloy disk surface. Since plowing and cold welding is
minimized, static friction is approximately equal to dynamic friction.

For tests at the highest temperature (843°C), dynamic friction in air is generally lower than
in Ar-H,. For example, Tests 1 and 2 represent H188 sliding against Pt coated MoRe where
a two to four fold reduction in friction in air is exhibited at 843°C. This reduction may be
due to the formation of a lubricious oxide layer which forms on the H188 at temperatures
above about 500°C>. When tested in Ar-H,, however, no such oxide layer can form and
thus friction is not reduced.

Concluding Remarks

When selecting and incorporating materials for seals, consideration must be made of both
static and dynamic friction. When soft coatings are used, excessive static friction can arise.
The use of soft coatings such as gold and silver should be limited to critical applications
where excellent compliance and conformability are required. The data tabulated in this
report represent an additional database available for seal design and can be used for material
candidate screening. More extensive testing and evaluations should be done for final

material selection.
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Table I. Material Properties C 25°C

Material Nominal Composition | Density, P Tensile CTE/°C Elastic Thermal
Strength, x10°6 Modulus, Conducti-
MPa mPa vity
W/m°K
Hiss = 37Co, 22Ni, 22Cr, 9.13 960 17 207 20
14.5W, 3Fe, 0.1C,
Incoloy 909 38Ni, 42Fe, 13Co, 8.3 1310 7.7 159 14.8
4.7N6, 1.5Ti, .4Si
René 41 55Ni, 19Cr, 11Co, 8.25 1420 15.6 210 23.1
10Mo, 3.1Ti, 1.5A1 i
Narloy Z 96.5Cu, 3Ag, 0.5Zr 9.13 315 16.5 126 355
MoRe S50Mo-50Re 13.7 1600 6.0 347 5.25
Waspaloy 57.5Ni, 19.5Cr, 8.2 1280 16 213GPa 24.1
13.5Co, 4.2Mo,
1Fe,
1.2Al, 3Tn

Table II. Test Materials

“ Pin Materials Oxidation Coating Lubricant Overlay
Incoloy 909 Cu-Cr Au
Incoloy 909 Cu-Cr Agl
Incoloy 909 Cu-Cr Ag I
Incoloy 909 None Agl
Incoloy 909 None Ag Il
Incoloy 909 None None
Haynes 188 None None

Waspaloy None None
René 41 None None
Disk Materials Oxidation Coating Lubricant Overlay
MoRe Pt None
Incoloy 909 Cu-Cr None
Narloy Z Cu-Cr None
Haynes 188 I
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Figure 1..—Schematic of typical panel seal applications.
(a) Typical "U" seal application. (b) "E" seal application.
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Figure 3.—Test temperature ramping and friction measurement
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Figure 4.—Pin wear scar of Ag coated Incoloy 909 showing plowing of Ag film.
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)

Figure 5.—Wear surface photomicrographs of Waspaloy pin sliding against Haynes 188
disk in air. Wear features and debris suggest mild abrasion (rather than severe plow-
ing) as the wear mode. (a) Pin wear scar. (b) Disk wear track.
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